Drones & AI detect soybean maturity

Univ. of Illinois research predicts soybean maturity date using drone images and artificial intelligence.
EDITED BY ANNE BLANKENBILLER
soybean maturity

In a new study from the University of Illinois, researchers predict soybean maturity date within two days using drone images and artificial intelligence, greatly reducing the need for boots on the ground. 

“Assessing pod maturity is very time consuming and prone to errors. It’s a scoring system based on the color of the pod, so it is also subject to human bias,” says Nicolas Martin, assistant professor in the Department of Crop Sciences at Illinois and co-author on the study. “Many research groups are trying to use drone pictures to assess maturity but can’t do it at scale. So we came up with a more precise way to do that. It was really cool, actually.” 

Rodrigo Trevisan, a doctoral student working with Martin, trained computers to detect changes in canopy color from drone images collected across five trials, three growing seasons and two countries. He was able to account for “bad” images to maintain accuracy.

“Let’s say we want to collect images every three days, but one day, there are clouds or it’s raining, so we cannot. In the end, when you get the data from different years or different locations, they will all look different in terms of the number of images and the intervals and so on,” Trevisan says. “The main innovation we developed is how we can account for whatever we are able to collect. Our model performs well independent of how often the data was collected.” 

Trevisan used a type of artificial intelligence called deep convolutional neural networks. He says CNNs are similar to the way human brains learn to interpret components of images – color, shape, texture – from our eyes. 

“CNNs detect slight variations in color in addition to shapes, borders and texture. For what we were trying to do, color was the most important thing,” Trevisan says. “But the advantage of the artificial intelligence models we used is that it would be quite straightforward to use the same model to predict another trait, such as yield or lodging. So now that we have these models set up, it should be much easier for people to use the same architecture and the same strategy to do many more things.”

Share on facebook
Share on linkedin
Share on twitter
Share on email

Share on social media:

Share on facebook
Share on twitter
Share on linkedin
Share on email
it-icon

RELATED NEWS

Klamath Water Users Association reacts to Bureau of Reclamation irrigation project announcement
Klamath water users concerned about irrigation amid a severe drought.
Field to Market received Walton Family Foundation grant to focus on ag supply chain sustainability
Grant supports development of greenhouse gas emissions reporting guidance and other priorities.
Utility poles can help predict spotted lanternfly behavior and trap them.
The spotted lanternfly feeds on 70+ plant species, a great concern to U.S. tree-fruit and grape growers.